Nuclear Targets for FGT

R. Petti

University of South Carolina, USA

DUNE ND Working Group Meeting September 24, 2015

Roberto Petti

NUCLEAR TARGETS

- ♦ Multiple nuclear targets in STT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, H_2O , D_2O , etc. \Rightarrow Separation from excellent vertex ($\sim 100 \mu m$) and angular (< 2 mrad) resolutions
- ♦ Subtraction of C TARGET (0.5 tons) from polypropylene $(C_3H_6)_n$ RADIATORS provides $5.0(1.5) \times 10^6 \pm 13(6.6) \times 10^3 (sub.) \nu(\bar{\nu})$ CC interactions on free proton \Rightarrow Absolute $\bar{\nu}_{\mu}$ flux from QE \Rightarrow Model-independent measurement of nuclear effects and FSI from RATIOS A/H
- lackloss Pressurized Ar GAS target (\sim 140 atm) inside SS/C tubes and solid Ca TARGET (more compact & effective) provide detailed understanding of the FD A=40 target
 - \implies Collect $\times 10$ unoscillated FD statistics on Ar target
 - ⇒ Study of flavor dependence & isospin physics

S. Kulagin and R.P, NPA 765 (2006) 126-187; PRD 76 (2007) 094023 PRC 82 (2010) 054614; arXiv:1405.2529 [hep-ph]

A.V. Butkevich, PRC 85 (2012) 065501; A.V. Butkevich and S. Kulagin, PRC 76 (2007) 045502

HRI Group, GENIE and GiBUU simulations

LONGITUDINAL PROFILE OF STT

- ★ Reference configuration of STT planes (from downstream to upstream):
 - Total of 75 STT XXYY modules with 4 straw layers and integrated radiators \implies Overall length of 600 cm $\longrightarrow \sim 1.09 X_0$ and mass ~ 5.18 tons
 - Total of 2 STT XXYY modules with radiators replaced by graphite targets (total 18 mm C) \Longrightarrow Overall length 16 cm $\longrightarrow \sim 0.093 X_0$ ($\rho=1.74$ g/cm³, $X_0=19.41$ cm) and C mass \sim 384 kg
 - One plane with 7 mm thick Ca target with C-fiber/composite enclosure, followed by one STT XXYY module without radiators
 - \Longrightarrow Overall length 8 cm $\longrightarrow \sim 0.067 X_0$ (ho=1.54 g/cm 3 , $X_0=10.41$ cm) and mass 132 kg
 - One plane with 68 2-in inner diameter (0.04-in wall) C-composite tubes (some R&D needed) filled with pressurized Ar gas at 140 atm, followed by one STT XXYY module without radiators \implies Overall length 12 cm $\longrightarrow \sim 0.02X_0$ and Ar (C) mass \sim 112 (66) kg
 - One plane with 1 mm steel (Fe) target followed by one STT XXYY module without radiators \implies Overall length 8 cm $\longrightarrow \sim 0.057X_0$ ($\rho = 7.874$ g/cm³, $X_0 = 1.76$ cm) and mass 96.5 kg
 - \Longrightarrow Total longitudinal STT length 644 cm equivalent to \sim 1.3 X_0 and \sim 7.1 tons
- ◆ Need to optimize the design and integrate Ar, Ca, C targets with the STT modules
- ◆ Need to develop mechanical engineering model for the Ar, Ca, C targets

RADIATOR TARGETS

- Design and physics performance (Transition Radiation) of radiator targets optimized (docdb # 9766)
 - ⇒ Mechanical engineering model available
- ◆ Radiator targets integrated at both sides of each STT (double layer) module to minimize overall thickness (foils could be removed if needed):
 - ullet Embossed polypropylene foils, 25 μm thick, 125 μm gaps;
 - Total number of radiator foils 240 per XXYY module, arranged into 4 radiators composed of 60 foils each;
 - Total radiator mass in each XXYY module: 69.1 kg, $1.25 \times 10^{-2} X_0$.
 - → The radiator represents 82.6%

 of the total mass of each STT module
 - ⇒ Tunable for desired statistics & p resolution

ARGON TARGET

- → Design constraints for the Ar target:
 - A FD LAr mass of 40 kt corresponds to a ND mass of 7.8 kg after scaling for the distance
 - The fiducial volume cut $(3m \times 3m)$ has efficiency 73%
 - \implies Need an Ar mass > 107 kg in FGT to collect 10 times the statistics in the Far Detector
 - Use pressurized Ar gas at 140 atm ($\rho = 0.233 \text{ g/cm}^3$) or higher inside cylindrical tubes followed by one XXYY STT module without radiators
 - ullet Need to use C-composite tubes (up to 500 KSI) to minimize enclosure material and provide higher strength than steel (welding \sim 10 KSI)
 - ⇒ Proof of concept with stainless steel tubes 0.5-in diameter, walls 0.065-in thick
 - \implies Use a single plane of C-composite tubes of larger diameter to optimize the Ar/C mass
 - ullet Keep a safety factor >4 for the Hoop / longitudinal stress in the design
 - Better to consider pre-filled and sealed Ar tubes (with safety valve) to avoid complex manifolds (risk of failure, weldings, etc.)
- ♦ Need to validate the design of C-composite tubes for pressurized Ar by building and testing small scale prototypes

Argon Gas Target Assembly – SS Version 216 tube assemblies welded to manifold

CALCIUM AND CARBON TARGETS

- ◆ Design constraints for the calcium (Ca) target
 - Calcium target needs to be enclosed in a C-fiber/composite and possibly oil-coated for safety (protect from moisture etc.)
 - Single plane of Ca ($\rho=1.54$ g/cm³, $X_0=10.41$ cm) 7 mm thick to minimize effect of enclosure followed by a STT XXYY module without radiators
 - ⇒ Total Ca mass must be comparable to the total pressurized Ar mass
 - Can split the Ca plane into an array of smaller sub-panels
- **♦** Design constraints for the C (graphite) target
 - Graphite slabs to be integrated into the mechanical structure of the STT modules
 - Can replace radiators by thin C (graphite) planes in STT XXYY modules (4 straw layers) $(\rho = 1.74 \text{ g/cm}^3, X_0 = 19.41 \text{ cm})$
 - \Longrightarrow Need total mass of C target \sim 400 kg while keeping overall thickness < 0.1 X_0
- ♦ Need to validate the design of Ca, C and radiator targets by building and testing small scale prototypes

Backup slides

Roberto Petti

TRANSITION RADIATION

- ◆ Simulation of Transition Radiation (TR) based on formalism by Garibian (1972), Cherry (1975)
 ⇒ Narrow energy range ~ few keV
- **♦** Radiator design optimized for TR performance:
 - TR build-up over many interfaces;
 - Self-absorption of lower part of energy spectrum;
 - Need compact radiarors to keep large tracking sampling.
 - \implies Select 25 μm foils, 125 μm spacing
- ♦ On average 1.1 TR photons with $E>5~{\rm keV}$ detected in a single STT module from a 1 GeV e
- ♦ dE/dx in straws are of the same order as TR at energies of few GeV: a 5 GeV $e(\pi)$ has a probability $\sim 41\%(18\%)$ of depositing E>6 keV

